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Regioselective and diastereoselective hydroformylation of
mono- and 1,3-disubstituted allylic alcohol o-DPPB esters is
described. The products represent synthetically important anti-
aldol retrons.

Hydroformylation of alkenes belongs to the most important
industrially applied processes relying on homogenous catalysis.1
However, control of stereochemistry in the course of this reaction
is still a challenge.2 We3 and others4 recently introduced a solution
to this problem which employs substrate bound catalyst-directing
groups. For instance, with the ortho-diphenylphosphanylbenzoate
function (o-DPPB) as the catalyst-directing group we were able to
achieve efficient acyclic stereocontrol upon hydroformylation of
1,2-disubstituted allylic alcohol derivatives 1 to give the syn-
aldehydes 2.5 These are interesting building blocks for polyketide
synthesis.6 However, to become a synthetically flexible method a
similar approach to an anti-stereochemical relation between
controlling and newly formed stereogenic center was certainly in
demand.

We herein report on the first regio- and diastereoselective
hydroformylation of 1,3-disubstituted allylic alcohol derivatives 3
(RA = Me) with the aid of the catalyst-directing o-DPPB group.
Extension of this methodology towards hydroformylation of mono-
substituted allylic alcohols 3 (RA = H) is also described.

In the course of the hydroformylation of an allylic alcohol
derivative 3 two selectivity issues appear, regio- and diaster-
eoselectivity, which have to be controlled simultanously.

We were pleased to find that hydroformylation of allylic o-DPPB
ester 5 (R = Bn) proceeded smoothly at 30 °C and 20 bar syngas
pressure with a rhodium catalyst loading of 0.7 mol% to give the
anti-aldehyde 6 as the major product in good regio- and
diastereoselectivity‡ (Table 1, entry 1). However, the reaction rate
was too low. Increasing the catalyst loading to 1.2 mol% reduced
the reaction time to 7 d (entry 2). Further improvement was
achieved when the pressure was increased to 30 and finally 40 bars
(entries 3–5). However, going to higher reaction temperatures

resulted in a significantly reduced diastereoselectivity (entry 6) and
gave a significant amount of the undesired elimination product 8.
Hence, best results were achieved employing 1.8 mol% catalyst
loading, 40 bar syngas and 30 °C in toluene for about 44 h (Table
1, entry 5). These conditions allowed a 90% conversion of o-DPPB
ester 5 to furnish anti-aldehyde 6 in a regioselectivity (6 : 7) of 90
: 10 and a diastereomer ratio (anti-6 : syn-6) of 98 : 2.

With these optimized conditions in hand we looked at the
dependence of the selectivity parameters as a function of the nature
of the substituent R at the controlling stereogenic center. Thus,
excellent diastereoselectivity was obtained for primary alkyl
substituents (Table 2, entries 1, 2, 4). Somewhat reduced diaster-
eoselectivities were noted for secondary alkyl substituents (entries
5, 6), whereas regioselectivity stays in most cases in the order of 9
: 1. However, for an isopropyl-substituted derivative the best
regioselectivity (98 : 2, entry 5) was observed.

In order to learn about the influence of double bond geometry on
the regio- and stereochemical outcome of the title reaction we
studied hydroformylation of cis-configured allylic-o-DPPB ester 5
(R = Bn). Surprisingly, chemo-, regio- and diastereoselectivity
were significantly lower compared to the trans-alkenic system 5
(see Table 2, entries 2 and 3).

Interestingly, when monosubstituted allylic o-DPPB esters were
used a similar regio- and stereodirecting effect of the catalyst-
directing o-DPPB group was observed (Scheme 1, Table 3). Thus,
regioselectivities up to 86 : 14 (10 : 11) and diastereoselectivities‡
up to 95 : 5 (anti-10 : syn-10) were found (Table 3) with formation

† Electronic supplementary information (ESI) available: experimental. See
http://www.rsc.org/suppdata/cc/b3/b311378g/

Table 1 Dependence of chemo-, regio- and diastereoselectivity of the o-
DPPB-directed hydroformylation of allylic ester 5 (R = Bn) on reaction
conditions

Entry
[Rh]a

(mol%)
pCO/H2/
bar T/°C Time

Conv.b,c

(%) 8b (%) rsb (6 : 7)
dr (6)b

(anti : syn)

1 0.7 20 30 13 d 83 5 87 : 13 89 : 11
2 1.2 20 30 7 d 90 7 90 : 10 93 : 7
3 1.2 30 30 4 d 89 < 2 90 : 10 98 : 2
4 2.0 30 30 47 h 92 < 2 89 : 11 94 : 6
5 1.8 40 30 44 h 90 < 2 90 : 10 98 : 2
6 2.0 40 40 46 h 90 10 89 : 11 90 : 10
7 2.0 40 20 48 h 88 < 2 90 : 10 98 : 2
a [Rh] = [Rh(CO)2acac]/1.67 P(OPh)3. b Determined from NMR analysis
of the crude reaction product. c Chemoselectivity towards aldehyde
formation was 100% in all cases.
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of the anti-aldol retron 10 as the major product. Interestingly,
aldehyde 10 represents a potentially valuable building block for the
synthesis of polypropionates.

In conclusion, o-DPPB-directed regio- and diastereoselective
hydroformylation of 1,3-disubstituted and mono-substituted allylic
o-DPPB esters 3 could be achieved. This methodology gives access
to the anti-aldol retron which is difficult to reach through aldol
chemistry directly. Thus, directed hydroformylation may become a
synthetically attractive alternative to established aldol7 or allylme-
tal8 chemistry for the construction of anti-aldol retron type
products.
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constants as well as NOESY data allowed assignment of relative
configuration.
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Table 2 Dependence of chemo-, regio- and diastereoselectivity of the o-
DPPB-directed hydroformylation of allylic esters 5 on substrate structure

Entry Major product
Conv.a,b

(%) 8a (%) rsa (6 : 7)
dr (6)a

(anti : syn)

1 90 3 91 : 9 95 : 5

2 90 < 2 90 : 10 98 : 2

3 from cis-5 (R = Bn) 40 39 61 : 39 58 : 42

4 90 5 92 : 8 92 : 8

5 91 3 98 : 2 87 : 13

6 95 7 90 : 10 91 : 9

a Determined from NMR analysis of the crude reaction product. b Chemose-
lectivity towards aldehyde formation was 100% in all cases.

Scheme 1 Conditions: (i) 1.8 mol% [Rh(CO)2acac], 3 mol% P(OPh)3, H2/
CO (1 : 1) 40 bar, toluene, 30 °C, 46 h.

Table 3 Regio- and diastereoselectivity for o-DPPB-directed hydro-
formylation of mono-substituted allylic esters 9

Entry Major product
Conv.a,b

(%) 12a (%) rsa (10 : 11)
dr (10)a

(anti : syn)

1 > 97 5 64 : 36 91 : 9

2 90 3 86 : 14 95 : 5

3 90 8 83 : 17 86 : 14

4 92 19 84 : 16 88 : 12

a See footnotes a, b in Table 2. b See footnotes a, b in Table 2.
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